@@ -22,7 +22,7 @@ please see the
2222
2323Choosing a good solver is required for getting top notch speed. General
2424recommendations can be found on the solver page (for example, the
25- [ODE Solver Recommendations](http://docs.juliadiffeq.org/latest /solvers/ode_solve.html)).
25+ [ODE Solver Recommendations](http://docs.juliadiffeq.org/dev /solvers/ode_solve.html)).
2626The current recommendations can be simplified to a Rosenbrock method
2727(`Rosenbrock23` or `Rodas5`) for smaller (<50 ODEs) problems, ESDIRK methods
2828for slightly larger (`TRBDF2` or `KenCarp4` for <2000 ODEs), and Sundials
@@ -35,7 +35,7 @@ compare many solvers on many problems.
3535
3636### Check Out the Speed FAQ
3737
38- See [this FAQ](http://docs.juliadiffeq.org/latest /basics/faq.html#Performance-1)
38+ See [this FAQ](http://docs.juliadiffeq.org/dev /basics/faq.html#Performance-1)
3939for information on common pitfalls and how to improve performance.
4040
4141### Setting Up Your Julia Installation for Speed
@@ -69,7 +69,7 @@ the linear algebra routines. Please see the package for the limitations.
6969
7070When possible, use GPUs. If your ODE system is small and you need to solve it
7171with very many different parameters, see the
72- [ensembles interface](http://docs.juliadiffeq.org/latest /features/ensemble.html)
72+ [ensembles interface](http://docs.juliadiffeq.org/dev /features/ensemble.html)
7373and [DiffEqGPU.jl](https://github.com/JuliaDiffEq/DiffEqGPU.jl). If your problem
7474is large, consider using a [CuArray](https://github.com/JuliaGPU/CuArrays.jl)
7575for the state to allow for GPU-parallelism of the internal linear algebra.
@@ -365,7 +365,7 @@ GMRES linear solver.
365365```
366366
367367For more information on linear solver choices, see the
368- [linear solver documentation](http://docs.juliadiffeq.org/latest /features/linear_nonlinear.html).
368+ [linear solver documentation](http://docs.juliadiffeq.org/dev /features/linear_nonlinear.html).
369369
370370On this problem, handling the sparsity correctly seemed to give much more of a
371371speedup than going to a Krylov approach, but that can be dependent on the problem
@@ -392,7 +392,7 @@ prob_ode_brusselator_2d_jacfree = ODEProblem(f,u0,(0.,11.5),p)
392392
393393### Adding a Preconditioner
394394
395- The [linear solver documentation](http://docs.juliadiffeq.org/latest /features/linear_nonlinear.html#IterativeSolvers.jl-Based-Methods-1)
395+ The [linear solver documentation](http://docs.juliadiffeq.org/dev /features/linear_nonlinear.html#IterativeSolvers.jl-Based-Methods-1)
396396shows how you can add a preconditioner to the GMRES. For example, you can
397397use packages like [AlgebraicMultigrid.jl](https://github.com/JuliaLinearAlgebra/AlgebraicMultigrid.jl)
398398to add an algebraic multigrid (AMG) or [IncompleteLU.jl](https://github.com/haampie/IncompleteLU.jl)
@@ -431,7 +431,7 @@ be given (otherwise it will default to attempting an LU-decomposition).
431431While much of the setup makes the transition to using Sundials automatic, there
432432are some differences between the pure Julia implementations and the Sundials
433433implementations which must be taken note of. These are all detailed in the
434- [Sundials solver documentation](http://docs.juliadiffeq.org/latest /solvers/ode_solve.html#Sundials.jl-1),
434+ [Sundials solver documentation](http://docs.juliadiffeq.org/dev /solvers/ode_solve.html#Sundials.jl-1),
435435but here we will highlight the main details which one should make note of.
436436
437437Defining a sparse matrix and a Jacobian for Sundials works just like any other
@@ -451,7 +451,7 @@ using Sundials
451451```
452452
453453Details for setting up a preconditioner with Sundials can be found at the
454- [Sundials solver page](http://docs.juliadiffeq.org/latest /solvers/ode_solve.html#Sundials.jl-1).
454+ [Sundials solver page](http://docs.juliadiffeq.org/dev /solvers/ode_solve.html#Sundials.jl-1).
455455
456456## Handling Mass Matrices
457457
@@ -503,4 +503,4 @@ plot(sol, xscale=:log10, tspan=(1e-6, 1e5), layout=(3,1))
503503
504504Note that if your mass matrix is singular, i.e. your system is a DAE, then you
505505need to make sure you choose
506- [a solver that is compatible with DAEs](http://docs.juliadiffeq.org/latest /solvers/dae_solve.html#Full-List-of-Methods-1)
506+ [a solver that is compatible with DAEs](http://docs.juliadiffeq.org/dev /solvers/dae_solve.html#Full-List-of-Methods-1)
0 commit comments