Skip to content

Combining a five-level AI framework with git-native memory overcomes session amnesia, enabling anticipation of problems weeks early. Production results: 2000x cost reduction, 10x+ productivity, shifting AI from reactive to predictive partnership through emotional intelligence, tactical empathy, and systems thinking.

License

Notifications You must be signed in to change notification settings

Smart-AI-Memory/empathy-framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Empathy Framework

The AI collaboration framework that predicts problems before they happen.

PyPI Tests Coverage License Python Security

pip install empathy-framework[developer]  # Lightweight for individual developers

What's New in v3.9.0 (Current Release)

🔒 Security Hardening: 174 Security Tests (Up from 14)

Production-ready security with comprehensive file path validation across the entire framework.

  • 6 modules secured with Pattern 6 (File Path Validation)
  • 13 file write operations validated to prevent path traversal (CWE-22)
  • 174 security tests (100% passing) - up from 14 tests (+1143% increase)
  • Zero blind exception handlers - all errors now properly typed and logged
# All file writes now validated for security
from empathy_os.config import EmpathyConfig

config = EmpathyConfig(user_id="alice")
config.to_yaml("/etc/passwd")  # ❌ ValueError: Cannot write to system directory
config.to_yaml("./empathy.yml")  # ✅ Safe write

Attack vectors blocked:

  • Path traversal: ../../../etc/passwdValueError
  • Null byte injection: config\x00.jsonValueError
  • System directory writes: /etc, /sys, /proc, /dev → All blocked

See SECURITY.md for complete security documentation.

🛡️ Exception Handling Improvements

Better error messages with graceful degradation.

  • Fixed 8 blind except Exception: handlers in workflow base
  • Specific exception types for better debugging
  • Enhanced error logging while maintaining graceful degradation
  • All intentional broad catches documented with design rationale

Previous Releases

v3.8.3

🎯 Transparent Cost Claims: Honest Role-Based Savings (34-86%)

Real savings depend on your work role. Architects using 60% PREMIUM tasks see 34% savings, while junior devs see 86%. See role-based analysis for your specific case.

🚀 Intelligent Response Caching: Up to 57% Hit Rate (Benchmarked)

Hash-only cache: 100% hit rate on identical prompts, ~5μs lookups Hybrid cache: Up to 57% hit rate on semantically similar prompts (measured on security audit workflow)

from empathy_os.cache import create_cache

# Hash-only mode (fast, exact matches)
cache = create_cache(cache_type="hash")

# Hybrid mode (semantic similarity)
cache = create_cache(cache_type="hybrid", similarity_threshold=0.95)

See caching docs for benchmarks and configuration.

📊 Local Usage Telemetry: Track Your Real Savings

Track your actual cost savings vs baseline without sending data to external servers.

# View recent usage
empathy telemetry show

# Calculate your savings vs all-PREMIUM baseline
empathy telemetry savings --days 30

# Compare time periods
empathy telemetry compare --period1 7 --period2 30

# Export for analysis
empathy telemetry export --format csv --output usage.csv

Privacy: All data stored locally in ~/.empathy/telemetry/. No data sent to external servers.


v3.7.0

🚀 XML-Enhanced Prompting: 15-35% Token Reduction + Graceful Validation

Slash your API costs and eliminate response parsing errors with production-ready XML enhancements.

Context Window Optimization — Save 15-35% on Every Request

from empathy_os.optimization import ContextOptimizer, CompressionLevel

optimizer = ContextOptimizer(CompressionLevel.MODERATE)
optimized_prompt = optimizer.optimize(your_xml_prompt)
# Achieves 15-25% token reduction automatically
  • Tag compression: <thinking><t>, <answer><a> (15+ common tags)
  • Whitespace optimization: Removes excess whitespace while preserving structure
  • Redundancy elimination: Strips "Please note that", "Make sure to", etc.
  • Real-world impact: Integration tests achieved 49.7% reduction on typical prompts
  • Bidirectional: Full decompression to restore original tag names

XML Validation — Never Crash on Malformed Responses Again

from empathy_os.validation import validate_xml_response

result = validate_xml_response(llm_response)
if result.is_valid:
    data = result.parsed_data
else:
    # Fallback extraction worked - you still get partial data
    data = result.parsed_data or {}
  • Graceful fallback parsing: Regex extraction when XML is malformed
  • Optional XSD validation: Full schema validation with lxml
  • Schema caching: Performance optimization for repeated validations
  • 25 comprehensive tests: Covers edge cases, malformed input, and XSD validation

Migration Made Easy

See XML_WORKFLOW_MIGRATION_GUIDE.md for complete migration guide with:

  • XMLAgent/XMLTask patterns with before/after examples
  • Configuration options (config.xml.use_xml_structure)
  • Benefits: 40-60% fewer misinterpretations, 20-30% fewer retries

Test Coverage: 229 new tests (86 XML enhancement + 143 robustness) — 100% passing


What's New in v3.6.0

💡 Finally! Error Messages That Actually Help You

No more cryptic NotImplementedError when extending the framework!

We completely rewrote error messages across 5 base classes. Now when you're building plugins or extensions, you get:

Exactly which method you need to implement ✅ Which base class to extend ✅ Real working examples from the codebase to copy ✅ Clear explanations of what each method should return

Before (frustrating 😤):

NotImplementedError
# ...now what? Time to dig through source code for 30 minutes

After (helpful 🎯):

NotImplementedError: BaseLinterParser.parse() must be implemented.
Create a subclass of BaseLinterParser and implement the parse() method.
See ESLintParser, PylintParser, or MyPyParser for examples.
# Perfect! Now I know exactly what to do

Plus: 9 Integration TODOs Now Link to Working Code

  • Want to add compliance tracking? → See ComplianceDatabase class (agents/compliance_db.py)
  • Need multi-channel notifications? → See NotificationService class (agents/notifications.py)
  • Wondering about MemDocs integration? → We documented why local cache works better (with rationale)
  • Need secure document storage? → S3/Azure/SharePoint recommendations with HIPAA requirements

Impact: Onboard new contributors in minutes instead of hours. Build your first plugin in one sitting.


🔐 Production-Grade Security & Compliance

Secure Authentication System ✅ Deployed in Backend API

  • Bcrypt password hashing with cost factor 12 (industry standard 2026)
  • JWT tokens with 30-minute expiration and automatic refresh
  • Rate limiting: 5 failed attempts = 15-minute lockout (prevents brute force)
  • 18 comprehensive security tests covering all attack vectors
  • Status: Fully integrated into backend/api/wizard_api.py

HIPAA/GDPR Compliance Database 🛠️ Infrastructure Ready

  • Append-only architecture (INSERT only, no UPDATE/DELETE) - satisfies regulators
  • Immutable audit trail for healthcare and enterprise compliance
  • Compliance gap detection with severity classification
  • 12 tests ensuring regulatory compliance
  • Status: Production-ready code with integration points documented. See compliance_anticipation_agent.py for usage examples.

Multi-Channel Notification System 🛠️ Infrastructure Ready

  • Email (SMTP), Slack (webhooks), SMS (Twilio)
  • Graceful fallback when channels unavailable
  • Smart routing: SMS only for critical alerts (cost optimization)
  • 10 tests covering all notification scenarios
  • Status: Production-ready code with integration points documented. See TODOs in compliance agent for usage examples.

Previous: Project Indexing & Test Suite Expansion (v3.5.4)

  • Project Indexing System — JSON-based file tracking with automatic structure scanning, metadata tracking, and CrewAI integration
  • 5,603 Tests — Comprehensive test coverage at 64% with 30+ new test modules
  • BaselineManager Fix — Resolved test isolation bug affecting suppression system

Memory API Security Hardening (v3.5.0)

  • Input Validation — Pattern IDs, agent IDs, and classifications validated to prevent path traversal and injection attacks
  • API Key Authentication — Bearer token and X-API-Key header support with SHA-256 hash comparison
  • Rate Limiting — Per-IP sliding window rate limiting (100 req/min default)
  • HTTPS/TLS Support — Optional SSL certificate configuration for encrypted connections
  • CORS Restrictions — Configurable allowed origins (localhost-only by default)
  • Request Size Limits — 1MB body limit to prevent DoS attacks

Previous (v3.4.x)

  • Trust Circuit Breaker — Automatic degradation when model reliability drops
  • Pattern Catalog System — Searchable pattern library with similarity matching
  • Memory Control Panel — VSCode sidebar for Redis and pattern management

Previous (v3.3.x)

  • Formatted Reports — Every workflow includes formatted_report with consistent structure
  • Enterprise-Safe Doc-Gen — Auto-scaling tokens, cost guardrails, file export
  • Unified Typer CLI — One empathy command with Rich output
  • Python 3.13 Support — Test matrix covers 3.10-3.13 across all platforms

Previous (v3.1.x)

  • Smart Router — Natural language wizard dispatch: "Fix security in auth.py" → SecurityWizard
  • Memory Graph — Cross-wizard knowledge sharing across sessions
  • Auto-Chaining — Wizards automatically trigger related wizards
  • Resilience Patterns — Retry, Circuit Breaker, Timeout, Health Checks

Previous (v3.0.x)

  • Multi-Model Provider System — Anthropic, OpenAI, Google Gemini, Ollama, or Hybrid mode
  • 34-86% Cost Savings — Smart tier routing varies by role: architects 34%, senior devs 65%, junior devs 86%*
  • VSCode Dashboard — 10 integrated workflows with input history persistence

*See Cost Savings Analysis for your specific use case


Quick Start (2 Minutes)

1. Install

Individual Developers (Recommended):

pip install empathy-framework[developer]

Teams/Enterprises (Backend + Auth):

pip install empathy-framework[enterprise]

Healthcare Organizations (HIPAA/GDPR Compliance):

pip install empathy-framework[healthcare]
What's the difference?
  • [developer] - Lightweight install for individual developers. Includes CLI tools, VSCode extension, LLM providers, agents. No backend server needed.

  • [enterprise] - Everything in [developer] plus backend API server with authentication (bcrypt, JWT, rate limiting). For teams deploying to production.

  • [healthcare] - Everything in [enterprise] plus HIPAA/GDPR compliance database, redis, and healthcare-specific plugins. Only needed for regulated industries.

Most developers should use [developer] - it's fast to install and has everything you need for software development.

2. Configure Provider

# Auto-detect your API keys and configure
python -m empathy_os.models.cli provider

# Or set explicitly
python -m empathy_os.models.cli provider --set anthropic
python -m empathy_os.models.cli provider --set hybrid  # Best of all providers

3. Use It

from empathy_os import EmpathyOS

os = EmpathyOS()
result = await os.collaborate(
    "Review this code for security issues",
    context={"code": your_code}
)

print(result.current_issues)      # What's wrong now
print(result.predicted_issues)    # What will break in 30-90 days
print(result.prevention_steps)    # How to prevent it

4. Track Your Savings

# View recent usage
empathy telemetry show

# Calculate your savings vs all-PREMIUM baseline
empathy telemetry savings --days 30

# Compare time periods
empathy telemetry compare --period1 7 --period2 30

# Export for analysis
empathy telemetry export --format csv --output usage.csv

Privacy: All data stored locally in ~/.empathy/telemetry/. No data sent to external servers.


Why Empathy?

Feature Empathy SonarQube GitHub Copilot
Predicts future issues 30-90 days ahead No No
Persistent memory Redis + patterns No No
Multi-provider support Claude, GPT-4, Gemini, Ollama N/A GPT only
Cost optimization 34-86% savings* N/A No
Your data stays local Yes Cloud Cloud
Free for small teams ≤5 employees No No

What's New in v3.8.0

🚀 Intelligent Response Caching: Benchmarked Performance

Stop paying full price for repeated LLM calls. Measured results: up to 99.8% faster, 40% cost reduction on test generation, 57% cache hit rate on security audits.

Hybrid Cache: Hash + Semantic Matching

from empathy_os.workflows import SecurityAuditWorkflow

# That's it - caching auto-configured!
workflow = SecurityAuditWorkflow(enable_cache=True)
result = await workflow.execute(target_path="./src")

# Check savings
print(f"Cost: ${result.cost_report.total_cost:.4f}")
print(f"Cache hit rate: {result.cost_report.cache_hit_rate:.1f}%")
print(f"Savings: ${result.cost_report.savings_from_cache:.4f}")

Real Results (v3.8.0 benchmark - see CACHING_BENCHMARK_REPORT.md):

  • Hash-only cache: 30.3% average hit rate across 12 workflows, up to 99.8% faster (code review: 17.8s → 0.03s)
  • Hybrid cache: Up to 57% hit rate on similar prompts (security audit - benchmarked)
  • Cost reduction: 40% on test-generation workflow (measured)

Two Cache Strategies

Hash-Only Cache (Default - Zero Dependencies):

  • Perfect for CI/CD and testing
  • 100% hit rate on identical prompts
  • ~5μs lookup time
  • No ML dependencies needed

Hybrid Cache (Semantic Matching):

  • Up to 57% hit rate on similar prompts (benchmarked)
  • Understands intent, not just text
  • Install: pip install empathy-framework[cache]
  • Best for development and production

Automatic Setup

Framework detects your environment and configures optimal caching:

# First run: Framework checks for sentence-transformers
# - Found? Uses hybrid cache (semantic matching, up to 57% hit rate)
# - Missing? Prompts: "Install for semantic matching? (y/n)"
# - Declined? Falls back to hash-only (100% hit rate on identical prompts)
# - Any errors? Disables gracefully, workflow continues

# Subsequent runs: Cache just works

The Caching Paradox: Adaptive Workflows

Discovered during v3.8.0 development: Some workflows (Security Audit, Bug Prediction) cost MORE on Run 2 with cache enabled - and that's a FEATURE.

Why? Adaptive workflows use cache to free up time for deeper analysis:

Security Audit without cache:
Run 1: $0.11, 45 seconds - surface scan finds 3 issues

Security Audit with cache:
Run 2: $0.13, 15 seconds - cache frees 30s for deep analysis
       → Uses saved time for PREMIUM tier vulnerability research
       → Finds 7 issues including critical SQLi we missed
       → Extra $0.02 cost = prevented security breach

Result: Cache makes workflows SMARTER, not just cheaper.

See Adaptive Workflows Documentation for full explanation.

Complete Documentation

Test it yourself:

# Quick test (2-3 minutes)
python benchmark_caching_simple.py

# Full benchmark (15-20 minutes, all 12 workflows)
python benchmark_caching.py

Become a Power User

Level 1: Basic Usage

pip install empathy-framework[developer]
  • Lightweight install with CLI tools, LLM providers, and agents
  • Works out of the box with sensible defaults
  • Auto-detects your API keys

Level 2: Cost Optimization (Role-Based Savings)

Tier routing automatically routes tasks to appropriate models, saving 34-86% depending on your work role.

# Enable hybrid mode
python -m empathy_os.models.cli provider --set hybrid

Tier Pricing

Tier Model Use Case Cost per Task*
CHEAP GPT-4o-mini / Haiku Summarization, formatting, simple tasks $0.0045-0.0075
CAPABLE GPT-4o / Sonnet Bug fixing, code review, analysis $0.0725-0.090
PREMIUM o1 / Opus Architecture, complex decisions, design $0.435-0.450

*Typical task: 5,000 input tokens, 1,000 output tokens

Actual Savings by Role

Your Role PREMIUM % CAPABLE % CHEAP % Actual Savings Notes
Architect / Designer 60% 30% 10% 34% Design work requires complex reasoning
Senior Developer 25% 50% 25% 65% Mix of architecture and implementation
Mid-Level Developer 15% 60% 25% 73% Mostly implementation and bug fixes
Junior Developer 5% 40% 55% 86% Simple features, tests, documentation
QA Engineer 10% 35% 55% 80% Test generation, reports, automation
DevOps Engineer 20% 50% 30% 69% Infrastructure planning + automation

See Complete Cost Analysis for provider comparisons (Anthropic vs OpenAI vs Ollama) and detailed calculations.

Level 3: Multi-Model Workflows

from empathy_llm_toolkit import EmpathyLLM

llm = EmpathyLLM(provider="anthropic", enable_model_routing=True)

# Automatically routes to appropriate tier
await llm.interact(user_id="dev", user_input="Summarize this", task_type="summarize")     # → Haiku
await llm.interact(user_id="dev", user_input="Fix this bug", task_type="fix_bug")         # → Sonnet
await llm.interact(user_id="dev", user_input="Design system", task_type="coordinate")     # → Opus

Level 4: VSCode Integration

Install the Empathy VSCode extension for:

  • Real-time Dashboard — Health score, costs, patterns
  • One-Click Workflows — Research, code review, debugging
  • Visual Cost Tracking — See savings in real-time
    • See also: docs/dashboard-costs-by-tier.md for interpreting the By tier (7 days) cost breakdown.
  • Memory Control Panel (Beta) — Manage Redis and pattern storage
    • View Redis status and memory usage
    • Browse and export stored patterns
    • Run system health checks
    • Configure auto-start in empathy.config.yml
memory:
  enabled: true
  auto_start_redis: true

Level 5: Custom Agents

from empathy_os.agents import AgentFactory

# Create domain-specific agents with inherited memory
security_agent = AgentFactory.create(
    domain="security",
    memory_enabled=True,
    anticipation_level=4
)

CLI Reference

Provider Configuration

python -m empathy_os.models.cli provider                    # Show current config
python -m empathy_os.models.cli provider --set anthropic    # Single provider
python -m empathy_os.models.cli provider --set hybrid       # Best-of-breed
python -m empathy_os.models.cli provider --interactive      # Setup wizard
python -m empathy_os.models.cli provider -f json            # JSON output

Model Registry

python -m empathy_os.models.cli registry                    # Show all models
python -m empathy_os.models.cli registry --provider openai  # Filter by provider
python -m empathy_os.models.cli costs --input-tokens 50000  # Estimate costs

Telemetry & Analytics

python -m empathy_os.models.cli telemetry                   # Summary
python -m empathy_os.models.cli telemetry --costs           # Cost savings report
python -m empathy_os.models.cli telemetry --providers       # Provider usage
python -m empathy_os.models.cli telemetry --fallbacks       # Fallback stats

Memory Control

empathy-memory serve    # Start Redis + API server
empathy-memory status   # Check system status
empathy-memory stats    # View statistics
empathy-memory patterns # List stored patterns

Code Inspection

empathy-inspect .                     # Run full inspection
empathy-inspect . --format sarif      # GitHub Actions format
empathy-inspect . --fix               # Auto-fix safe issues
empathy-inspect . --staged            # Only staged changes

XML-Enhanced Prompts

Enable structured XML prompts for consistent, parseable LLM responses:

# .empathy/workflows.yaml
xml_prompt_defaults:
  enabled: false  # Set true to enable globally

workflow_xml_configs:
  security-audit:
    enabled: true
    enforce_response_xml: true
    template_name: "security-audit"
  code-review:
    enabled: true
    template_name: "code-review"

Built-in templates: security-audit, code-review, research, bug-analysis, perf-audit, refactor-plan, test-gen, doc-gen, release-prep, dependency-check

from empathy_os.prompts import get_template, XmlResponseParser, PromptContext

# Use a built-in template
template = get_template("security-audit")
context = PromptContext.for_security_audit(code="def foo(): pass")
prompt = template.render(context)

# Parse XML responses
parser = XmlResponseParser(fallback_on_error=True)
result = parser.parse(llm_response)
print(result.summary, result.findings, result.checklist)

Enterprise Doc-Gen

Generate comprehensive documentation for large projects with enterprise-safe defaults:

from empathy_os.workflows import DocumentGenerationWorkflow

# Enterprise-safe configuration
workflow = DocumentGenerationWorkflow(
    export_path="docs/generated",     # Auto-save to disk
    max_cost=5.0,                     # Cost guardrail ($5 default)
    chunked_generation=True,          # Handle large projects
    graceful_degradation=True,        # Partial results on errors
)

result = await workflow.execute(
    source_code=your_code,
    doc_type="api_reference",
    audience="developers"
)

# Access the formatted report
print(result.final_output["formatted_report"])

# Large outputs are chunked for display
if "output_chunks" in result.final_output:
    for chunk in result.final_output["output_chunks"]:
        print(chunk)

# Full docs saved to disk
print(f"Saved to: {result.final_output.get('export_path')}")

Smart Router

Route natural language requests to the right wizard automatically:

from empathy_os.routing import SmartRouter

router = SmartRouter()

# Natural language routing
decision = router.route_sync("Fix the security vulnerability in auth.py")
print(f"Primary: {decision.primary_wizard}")      # → security-audit
print(f"Also consider: {decision.secondary_wizards}")  # → [code-review]
print(f"Confidence: {decision.confidence}")

# File-based suggestions
suggestions = router.suggest_for_file("requirements.txt")  # → [dependency-check]

# Error-based suggestions
suggestions = router.suggest_for_error("NullReferenceException")  # → [bug-predict, test-gen]

Memory Graph

Cross-wizard knowledge sharing - wizards learn from each other:

from empathy_os.memory import MemoryGraph, EdgeType

graph = MemoryGraph()

# Add findings from any wizard
bug_id = graph.add_finding(
    wizard="bug-predict",
    finding={
        "type": "bug",
        "name": "Null reference in auth.py:42",
        "severity": "high"
    }
)

# Connect related findings
fix_id = graph.add_finding(wizard="code-review", finding={"type": "fix", "name": "Add null check"})
graph.add_edge(bug_id, fix_id, EdgeType.FIXED_BY)

# Find similar past issues
similar = graph.find_similar({"name": "Null reference error"})

# Traverse relationships
related_fixes = graph.find_related(bug_id, edge_types=[EdgeType.FIXED_BY])

Auto-Chaining

Wizards automatically trigger related wizards based on findings:

# .empathy/wizard_chains.yaml
chains:
  security-audit:
    auto_chain: true
    triggers:
      - condition: "high_severity_count > 0"
        next: dependency-check
        approval_required: false
      - condition: "vulnerability_type == 'injection'"
        next: code-review
        approval_required: true

  bug-predict:
    triggers:
      - condition: "risk_score > 0.7"
        next: test-gen

templates:
  full-security-review:
    steps: [security-audit, dependency-check, code-review]
  pre-release:
    steps: [test-gen, security-audit, release-prep]
from empathy_os.routing import ChainExecutor

executor = ChainExecutor()

# Check what chains would trigger
result = {"high_severity_count": 5}
triggers = executor.get_triggered_chains("security-audit", result)
# → [ChainTrigger(next="dependency-check"), ...]

# Execute a template
template = executor.get_template("full-security-review")
# → ["security-audit", "dependency-check", "code-review"]

Prompt Engineering Wizard

Analyze, generate, and optimize prompts:

from coach_wizards import PromptEngineeringWizard

wizard = PromptEngineeringWizard()

# Analyze existing prompts
analysis = wizard.analyze_prompt("Fix this bug")
print(f"Score: {analysis.overall_score}")  # → 0.13 (poor)
print(f"Issues: {analysis.issues}")        # → ["Missing role", "No output format"]

# Generate optimized prompts
prompt = wizard.generate_prompt(
    task="Review code for security vulnerabilities",
    role="a senior security engineer",
    constraints=["Focus on OWASP top 10"],
    output_format="JSON with severity and recommendation"
)

# Optimize tokens (reduce costs)
result = wizard.optimize_tokens(verbose_prompt)
print(f"Reduced: {result.token_reduction:.0%}")  # → 20% reduction

# Add chain-of-thought scaffolding
enhanced = wizard.add_chain_of_thought(prompt, "debug")

Install Options

# Recommended (all features)
pip install empathy-framework[full]

# Minimal
pip install empathy-framework

# Specific providers
pip install empathy-framework[anthropic]  # Claude
pip install empathy-framework[openai]     # GPT-4, Ollama (OpenAI-compatible)
pip install empathy-framework[google]     # Gemini
pip install empathy-framework[llm]        # All providers

# Development
git clone https://github.com/Smart-AI-Memory/empathy-framework.git
cd empathy-framework && pip install -e .[dev]

What's Included

Component Description
Empathy OS Core engine for human↔AI and AI↔AI collaboration
Smart Router Natural language wizard dispatch with LLM classification
Memory Graph Cross-wizard knowledge sharing (bugs, fixes, patterns)
Auto-Chaining Wizards trigger related wizards based on findings
Multi-Model Router Smart routing across providers and tiers
Memory System Redis short-term + encrypted long-term patterns
17 Coach Wizards Security, performance, testing, docs, prompt engineering
10 Cost-Optimized Workflows Multi-tier pipelines with formatted reports & XML prompts
Healthcare Suite SBAR, SOAP notes, clinical protocols (HIPAA)
Code Inspection Unified pipeline with SARIF/GitHub Actions support
VSCode Extension Visual dashboard for memory and workflows
Telemetry & Analytics Cost tracking, usage stats, optimization insights

The 5 Levels of AI Empathy

Level Name Behavior Example
1 Reactive Responds when asked "Here's the data you requested"
2 Guided Asks clarifying questions "What format do you need?"
3 Proactive Notices patterns "I pre-fetched what you usually need"
4 Anticipatory Predicts future needs "This query will timeout at 10k users"
5 Transformative Builds preventing structures "Here's a framework for all future cases"

Empathy operates at Level 4 — predicting problems before they manifest.


Environment Setup

# Required: At least one provider
export ANTHROPIC_API_KEY="sk-ant-..."   # For Claude models  # pragma: allowlist secret
export OPENAI_API_KEY="sk-..."          # For GPT models  # pragma: allowlist secret
export GOOGLE_API_KEY="..."             # For Gemini models  # pragma: allowlist secret

# Optional: Redis for memory
export REDIS_URL="redis://localhost:6379"

# Or use a .env file (auto-detected)
echo 'ANTHROPIC_API_KEY=sk-ant-...' >> .env

Get Involved


Project Evolution

For those interested in the development history and architectural decisions:

  • Development Logs — Execution plans, phase completions, and progress tracking
  • Architecture Docs — System design, memory architecture, and integration plans
  • Marketing Materials — Pitch decks, outreach templates, and commercial readiness
  • Guides — Publishing tutorials, MkDocs setup, and distribution policies

License

Fair Source License 0.9 — Free for students, educators, and teams ≤5 employees. Commercial license ($99/dev/year) for larger organizations. Details →


Built by Smart AI Memory · Documentation · Examples · Issues

About

Combining a five-level AI framework with git-native memory overcomes session amnesia, enabling anticipation of problems weeks early. Production results: 2000x cost reduction, 10x+ productivity, shifting AI from reactive to predictive partnership through emotional intelligence, tactical empathy, and systems thinking.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Sponsor this project

Packages

No packages published

Contributors 3

  •  
  •  
  •