Skip to content

Commit 651dca2

Browse files
committed
Pull out a lemma
1 parent 6387318 commit 651dca2

File tree

2 files changed

+57
-47
lines changed

2 files changed

+57
-47
lines changed

src/analysis/absolute-convergence-series-real-banach-spaces.lagda.md

Lines changed: 6 additions & 47 deletions
Original file line numberDiff line numberDiff line change
@@ -150,57 +150,16 @@ module _
150150
( transitive-leq-ℕ (pr1 (M ε)) n (n +ℕ k) (leq-add-ℕ n k) με≤n)
151151
( με≤n))
152152
153-
neighborhood-leq-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space :
154-
(ε : ℚ⁺) (n k : ℕ) → leq-ℕ (pr1 (M ε)) n → leq-ℕ n k →
155-
neighborhood-ℝ-Banach-Space
156-
( V)
157-
( ε)
158-
( partial-sum-series-ℝ-Banach-Space V σ k)
159-
( partial-sum-series-ℝ-Banach-Space V σ n)
160-
neighborhood-leq-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space
161-
ε n k με≤n n≤k =
162-
let
163-
(l , l+n=k) = subtraction-leq-ℕ n k n≤k
164-
in
165-
tr
166-
( λ p →
167-
leq-ℝ
168-
( dist-ℝ-Banach-Space V
169-
( partial-sum-series-ℝ-Banach-Space V σ p)
170-
( _))
171-
( _))
172-
( commutative-add-ℕ n l ∙ l+n=k)
173-
( neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space
174-
( ε)
175-
( n)
176-
( l)
177-
( με≤n))
178-
179153
is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space :
180154
is-cauchy-sequence-Metric-Space
181155
( metric-space-ℝ-Banach-Space V)
182156
( partial-sum-series-ℝ-Banach-Space V σ)
183-
is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space
184-
ε =
185-
( pr1 (M ε) ,
186-
λ a b με≤a με≤b →
187-
rec-coproduct
188-
( λ a≤b →
189-
tr
190-
( λ d → leq-ℝ d (real-ℚ⁺ ε))
191-
( commutative-dist-ℝ-Banach-Space V _ _)
192-
( neighborhood-leq-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space
193-
( ε)
194-
( a)
195-
( b)
196-
( με≤a)
197-
( a≤b)))
198-
( neighborhood-leq-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space
199-
( ε)
200-
( b)
201-
( a)
202-
( με≤b))
203-
( linear-leq-ℕ a b))
157+
is-cauchy-partial-sum-is-cauchy-partial-sum-norm-series-ℝ-Banach-Space =
158+
is-cauchy-sequence-modulus-neighborhood-add-sequence-Metric-Space
159+
( metric-space-ℝ-Banach-Space V)
160+
( partial-sum-series-ℝ-Banach-Space V σ)
161+
( pr1 ∘ M)
162+
( neighborhood-add-cauchy-modulus-partial-sum-norm-series-ℝ-Banach-Space)
204163
```
205164

206165
### If a series is absolutely convergent, it is convergent

src/metric-spaces/cauchy-sequences-metric-spaces.lagda.md

Lines changed: 51 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -9,6 +9,7 @@ module metric-spaces.cauchy-sequences-metric-spaces where
99
<details><summary>Imports</summary>
1010

1111
```agda
12+
open import elementary-number-theory.addition-natural-numbers
1213
open import elementary-number-theory.addition-positive-rational-numbers
1314
open import elementary-number-theory.addition-rational-numbers
1415
open import elementary-number-theory.archimedean-property-positive-rational-numbers
@@ -772,6 +773,56 @@ module _
772773
is-cauchy-sequence-pair-cauchy-sequence-Metric-Space)
773774
```
774775

776+
### To show a sequence `aₙ` is Cauchy, it suffices to have a modulus function such that for any `ε`, `aₙ` and `aₙ₊ₖ` are in an `ε`-neighborhood for sufficiently large `n`
777+
778+
```agda
779+
module
780+
_
781+
{l1 l2 : Level}
782+
(X : Metric-Space l1 l2)
783+
(a : sequence-type-Metric-Space X)
784+
(μ : ℚ⁺ → ℕ)
785+
where
786+
787+
abstract
788+
is-cauchy-modulus-neighborhood-add-sequence-Metric-Space :
789+
( (ε : ℚ⁺) (n k : ℕ) → leq-ℕ (μ ε) n →
790+
neighborhood-Metric-Space X ε (a (n +ℕ k)) (a n)) →
791+
(ε : ℚ⁺) →
792+
is-cauchy-modulus-sequence-Metric-Space X a ε (μ ε)
793+
is-cauchy-modulus-neighborhood-add-sequence-Metric-Space H ε p q με≤p με≤q =
794+
let
795+
lemma :
796+
(m n : ℕ) → leq-ℕ (μ ε) m → leq-ℕ m n →
797+
neighborhood-Metric-Space X ε (a n) (a m)
798+
lemma m n με≤m m≤n =
799+
let
800+
( k , k+m=n) = subtraction-leq-ℕ m n m≤n
801+
in
802+
tr
803+
( λ p → neighborhood-Metric-Space X ε (a p) (a m))
804+
( commutative-add-ℕ m k ∙ k+m=n)
805+
( H ε m k με≤m)
806+
in
807+
rec-coproduct
808+
( λ p≤q →
809+
symmetric-neighborhood-Metric-Space
810+
( X)
811+
( ε)
812+
( a q)
813+
( a p)
814+
( lemma p q με≤p p≤q))
815+
( lemma q p με≤q)
816+
( linear-leq-ℕ p q)
817+
818+
is-cauchy-sequence-modulus-neighborhood-add-sequence-Metric-Space :
819+
( (ε : ℚ⁺) (n k : ℕ) → leq-ℕ (μ ε) n →
820+
neighborhood-Metric-Space X ε (a (n +ℕ k)) (a n)) →
821+
is-cauchy-sequence-Metric-Space X a
822+
is-cauchy-sequence-modulus-neighborhood-add-sequence-Metric-Space H ε =
823+
( μ ε , is-cauchy-modulus-neighborhood-add-sequence-Metric-Space H ε)
824+
```
825+
775826
## See also
776827

777828
- [Cauchy sequences in complete metric spaces](metric-spaces.cauchy-sequences-complete-metric-spaces.md)

0 commit comments

Comments
 (0)