|
| 1 | +# Real inner product spaces are normed |
| 2 | + |
| 3 | +```agda |
| 4 | +{-# OPTIONS --lossy-unification #-} |
| 5 | +
|
| 6 | +module linear-algebra.real-inner-product-spaces-are-normed where |
| 7 | +``` |
| 8 | + |
| 9 | +<details><summary>Imports</summary> |
| 10 | + |
| 11 | +```agda |
| 12 | +open import elementary-number-theory.nonzero-natural-numbers |
| 13 | +
|
| 14 | +open import foundation.action-on-identifications-functions |
| 15 | +open import foundation.dependent-pair-types |
| 16 | +open import foundation.identity-types |
| 17 | +open import foundation.logical-equivalences |
| 18 | +open import foundation.transport-along-identifications |
| 19 | +open import foundation.universe-levels |
| 20 | +
|
| 21 | +open import linear-algebra.cauchy-schwarz-inequality-real-inner-product-spaces |
| 22 | +open import linear-algebra.normed-real-vector-spaces |
| 23 | +open import linear-algebra.real-inner-product-spaces |
| 24 | +open import linear-algebra.seminormed-real-vector-spaces |
| 25 | +
|
| 26 | +open import metric-spaces.equality-of-metric-spaces |
| 27 | +open import metric-spaces.metric-spaces |
| 28 | +
|
| 29 | +open import order-theory.large-posets |
| 30 | +
|
| 31 | +open import real-numbers.absolute-value-real-numbers |
| 32 | +open import real-numbers.addition-nonnegative-real-numbers |
| 33 | +open import real-numbers.addition-real-numbers |
| 34 | +open import real-numbers.inequalities-addition-and-subtraction-real-numbers |
| 35 | +open import real-numbers.inequality-real-numbers |
| 36 | +open import real-numbers.metric-space-of-real-numbers |
| 37 | +open import real-numbers.multiplication-positive-real-numbers |
| 38 | +open import real-numbers.multiplication-real-numbers |
| 39 | +open import real-numbers.positive-real-numbers |
| 40 | +open import real-numbers.raising-universe-levels-real-numbers |
| 41 | +open import real-numbers.rational-real-numbers |
| 42 | +open import real-numbers.similarity-real-numbers |
| 43 | +open import real-numbers.square-roots-nonnegative-real-numbers |
| 44 | +open import real-numbers.squares-real-numbers |
| 45 | +``` |
| 46 | + |
| 47 | +</details> |
| 48 | + |
| 49 | +## Idea |
| 50 | + |
| 51 | +Given a [real inner product space](linear-algebra.real-inner-product-spaces.md) |
| 52 | +`V`, defining the norm of `v` as the |
| 53 | +[square root](real-numbers.square-roots-nonnegative-real-numbers.md) of the |
| 54 | +inner product of `v` with itself satisfies the conditions of a |
| 55 | +[normed real vector space](linear-algebra.normed-real-vector-spaces.md). |
| 56 | + |
| 57 | +## Definition |
| 58 | + |
| 59 | +```agda |
| 60 | +module _ |
| 61 | + {l1 l2 : Level} |
| 62 | + (V : ℝ-Inner-Product-Space l1 l2) |
| 63 | + where |
| 64 | +
|
| 65 | + abstract |
| 66 | + is-triangular-squared-norm-ℝ-Inner-Product-Space : |
| 67 | + (u v : type-ℝ-Inner-Product-Space V) → |
| 68 | + leq-ℝ |
| 69 | + ( squared-norm-ℝ-Inner-Product-Space V |
| 70 | + ( add-ℝ-Inner-Product-Space V u v)) |
| 71 | + ( square-ℝ |
| 72 | + ( ( norm-ℝ-Inner-Product-Space V u) +ℝ |
| 73 | + ( norm-ℝ-Inner-Product-Space V v))) |
| 74 | + is-triangular-squared-norm-ℝ-Inner-Product-Space u v = |
| 75 | + let |
| 76 | + open inequality-reasoning-Large-Poset ℝ-Large-Poset |
| 77 | + in |
| 78 | + chain-of-inequalities |
| 79 | + squared-norm-ℝ-Inner-Product-Space V (add-ℝ-Inner-Product-Space V u v) |
| 80 | + ≤ ( squared-norm-ℝ-Inner-Product-Space V u) +ℝ |
| 81 | + ( real-ℕ 2 *ℝ inner-product-ℝ-Inner-Product-Space V u v) +ℝ |
| 82 | + ( squared-norm-ℝ-Inner-Product-Space V v) |
| 83 | + by leq-eq-ℝ (squared-norm-add-ℝ-Inner-Product-Space V u v) |
| 84 | + ≤ ( squared-norm-ℝ-Inner-Product-Space V u) +ℝ |
| 85 | + ( ( real-ℕ 2) *ℝ |
| 86 | + ( ( norm-ℝ-Inner-Product-Space V u) *ℝ |
| 87 | + norm-ℝ-Inner-Product-Space V v)) +ℝ |
| 88 | + ( squared-norm-ℝ-Inner-Product-Space V v) |
| 89 | + by |
| 90 | + preserves-leq-right-add-ℝ _ _ _ |
| 91 | + ( preserves-leq-left-add-ℝ _ _ _ |
| 92 | + ( preserves-leq-left-mul-ℝ⁺ |
| 93 | + ( positive-real-ℕ⁺ two-ℕ⁺) |
| 94 | + ( transitive-leq-ℝ _ _ _ |
| 95 | + ( cauchy-schwarz-inequality-ℝ-Inner-Product-Space V u v) |
| 96 | + ( leq-abs-ℝ _)))) |
| 97 | + ≤ ( square-ℝ (norm-ℝ-Inner-Product-Space V u)) +ℝ |
| 98 | + ( ( real-ℕ 2) *ℝ |
| 99 | + ( ( norm-ℝ-Inner-Product-Space V u) *ℝ |
| 100 | + norm-ℝ-Inner-Product-Space V v)) +ℝ |
| 101 | + ( square-ℝ (norm-ℝ-Inner-Product-Space V v)) |
| 102 | + by |
| 103 | + leq-eq-ℝ |
| 104 | + ( ap-add-ℝ |
| 105 | + ( ap-add-ℝ |
| 106 | + ( inv |
| 107 | + ( eq-real-square-sqrt-ℝ⁰⁺ |
| 108 | + ( nonnegative-squared-norm-ℝ-Inner-Product-Space V u))) |
| 109 | + ( refl)) |
| 110 | + ( inv |
| 111 | + ( eq-real-square-sqrt-ℝ⁰⁺ |
| 112 | + ( nonnegative-squared-norm-ℝ-Inner-Product-Space V v)))) |
| 113 | + ≤ square-ℝ |
| 114 | + ( ( norm-ℝ-Inner-Product-Space V u) +ℝ |
| 115 | + ( norm-ℝ-Inner-Product-Space V v)) |
| 116 | + by leq-eq-ℝ (inv (square-add-ℝ _ _)) |
| 117 | +
|
| 118 | + is-triangular-norm-ℝ-Inner-Product-Space : |
| 119 | + (u v : type-ℝ-Inner-Product-Space V) → |
| 120 | + leq-ℝ |
| 121 | + ( norm-ℝ-Inner-Product-Space V (add-ℝ-Inner-Product-Space V u v)) |
| 122 | + ( norm-ℝ-Inner-Product-Space V u +ℝ norm-ℝ-Inner-Product-Space V v) |
| 123 | + is-triangular-norm-ℝ-Inner-Product-Space u v = |
| 124 | + tr |
| 125 | + ( leq-ℝ _) |
| 126 | + ( ( inv (eq-abs-sqrt-square-ℝ _)) ∙ |
| 127 | + ( abs-real-ℝ⁰⁺ |
| 128 | + ( ( nonnegative-norm-ℝ-Inner-Product-Space V u) +ℝ⁰⁺ |
| 129 | + ( nonnegative-norm-ℝ-Inner-Product-Space V v)))) |
| 130 | + ( preserves-leq-sqrt-ℝ⁰⁺ |
| 131 | + ( nonnegative-squared-norm-ℝ-Inner-Product-Space V |
| 132 | + ( add-ℝ-Inner-Product-Space V u v)) |
| 133 | + ( nonnegative-square-ℝ |
| 134 | + ( norm-ℝ-Inner-Product-Space V u +ℝ norm-ℝ-Inner-Product-Space V v)) |
| 135 | + ( is-triangular-squared-norm-ℝ-Inner-Product-Space u v)) |
| 136 | +
|
| 137 | + is-seminorm-norm-ℝ-Inner-Product-Space : |
| 138 | + is-seminorm-ℝ-Vector-Space |
| 139 | + ( vector-space-ℝ-Inner-Product-Space V) |
| 140 | + ( norm-ℝ-Inner-Product-Space V) |
| 141 | + is-seminorm-norm-ℝ-Inner-Product-Space = |
| 142 | + ( is-triangular-norm-ℝ-Inner-Product-Space , |
| 143 | + is-absolutely-homogeneous-norm-ℝ-Inner-Product-Space V) |
| 144 | +
|
| 145 | + abstract |
| 146 | + is-extensional-norm-ℝ-Inner-Product-Space : |
| 147 | + (v : type-ℝ-Inner-Product-Space V) → |
| 148 | + (norm-ℝ-Inner-Product-Space V v = raise-ℝ l1 zero-ℝ) → |
| 149 | + is-zero-ℝ-Inner-Product-Space V v |
| 150 | + is-extensional-norm-ℝ-Inner-Product-Space v ∥v∥=0 = |
| 151 | + is-extensional-diagonal-inner-product-ℝ-Inner-Product-Space |
| 152 | + ( V) |
| 153 | + ( v) |
| 154 | + ( equational-reasoning |
| 155 | + squared-norm-ℝ-Inner-Product-Space V v |
| 156 | + = square-ℝ (norm-ℝ-Inner-Product-Space V v) |
| 157 | + by |
| 158 | + inv |
| 159 | + ( eq-real-square-sqrt-ℝ⁰⁺ |
| 160 | + ( nonnegative-squared-norm-ℝ-Inner-Product-Space V v)) |
| 161 | + = square-ℝ (raise-ℝ l1 zero-ℝ) |
| 162 | + by ap square-ℝ ∥v∥=0 |
| 163 | + = raise-ℝ l1 zero-ℝ |
| 164 | + by square-raise-zero-ℝ l1) |
| 165 | +
|
| 166 | + norm-normed-vector-space-ℝ-Inner-Product-Space : |
| 167 | + norm-ℝ-Vector-Space (vector-space-ℝ-Inner-Product-Space V) |
| 168 | + norm-normed-vector-space-ℝ-Inner-Product-Space = |
| 169 | + ( ( norm-ℝ-Inner-Product-Space V , |
| 170 | + is-seminorm-norm-ℝ-Inner-Product-Space) , |
| 171 | + is-extensional-norm-ℝ-Inner-Product-Space) |
| 172 | +
|
| 173 | + normed-vector-space-ℝ-Inner-Product-Space : Normed-ℝ-Vector-Space l1 l2 |
| 174 | + normed-vector-space-ℝ-Inner-Product-Space = |
| 175 | + ( vector-space-ℝ-Inner-Product-Space V , |
| 176 | + norm-normed-vector-space-ℝ-Inner-Product-Space) |
| 177 | +
|
| 178 | + metric-space-ℝ-Inner-Product-Space : Metric-Space l2 l1 |
| 179 | + metric-space-ℝ-Inner-Product-Space = |
| 180 | + metric-space-Normed-ℝ-Vector-Space normed-vector-space-ℝ-Inner-Product-Space |
| 181 | +``` |
| 182 | + |
| 183 | +## Properties |
| 184 | + |
| 185 | +### The metric space of the inner product space of `ℝ` over itself is the standard metric space of `ℝ` |
| 186 | + |
| 187 | +```agda |
| 188 | +abstract |
| 189 | + isometric-eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ : |
| 190 | + (l : Level) → |
| 191 | + isometric-eq-Metric-Space |
| 192 | + ( metric-space-ℝ-Inner-Product-Space (real-inner-product-space-ℝ l)) |
| 193 | + ( metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l)) |
| 194 | + isometric-eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ |
| 195 | + l = |
| 196 | + ( refl , |
| 197 | + λ d x y → |
| 198 | + iff-eq |
| 199 | + ( ap |
| 200 | + ( λ m → leq-prop-ℝ m (real-ℚ⁺ d)) |
| 201 | + ( inv (eq-abs-sqrt-square-ℝ _)))) |
| 202 | +
|
| 203 | + eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ : |
| 204 | + (l : Level) → |
| 205 | + metric-space-ℝ-Inner-Product-Space (real-inner-product-space-ℝ l) = |
| 206 | + metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) |
| 207 | + eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ l = |
| 208 | + eq-isometric-eq-Metric-Space _ _ |
| 209 | + ( isometric-eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ |
| 210 | + ( l)) |
| 211 | +
|
| 212 | + eq-metric-space-real-inner-product-space-ℝ : |
| 213 | + (l : Level) → |
| 214 | + metric-space-ℝ-Inner-Product-Space (real-inner-product-space-ℝ l) = |
| 215 | + metric-space-ℝ l |
| 216 | + eq-metric-space-real-inner-product-space-ℝ l = |
| 217 | + ( eq-metric-space-real-inner-product-space-normed-real-vector-space-ℝ l) ∙ |
| 218 | + ( eq-metric-space-normed-real-vector-space-metric-space-ℝ l) |
| 219 | +``` |
0 commit comments