@@ -11,6 +11,7 @@ module linear-algebra.bilinear-forms-real-vector-spaces where
1111``` agda
1212open import foundation.conjunction
1313open import foundation.dependent-pair-types
14+ open import foundation.identity-types
1415open import foundation.propositions
1516open import foundation.sets
1617open import foundation.subtypes
@@ -171,6 +172,33 @@ module _
171172 ( map-bilinear-form-ℝ-Vector-Space)
172173 preserves-scalar-mul-right-map-bilinear-form-ℝ-Vector-Space =
173174 pr2 (pr2 (pr2 (pr2 B)))
175+
176+ abstract
177+ preserves-scalar-mul-map-bilinear-form-ℝ-Vector-Space :
178+ (a b : ℝ l1) (u v : type-ℝ-Vector-Space V) →
179+ map-bilinear-form-ℝ-Vector-Space
180+ ( mul-ℝ-Vector-Space V a u)
181+ ( mul-ℝ-Vector-Space V b v) =
182+ (a *ℝ b) *ℝ map-bilinear-form-ℝ-Vector-Space u v
183+ preserves-scalar-mul-map-bilinear-form-ℝ-Vector-Space a b u v =
184+ equational-reasoning
185+ map-bilinear-form-ℝ-Vector-Space
186+ ( mul-ℝ-Vector-Space V a u)
187+ ( mul-ℝ-Vector-Space V b v)
188+ =
189+ a *ℝ map-bilinear-form-ℝ-Vector-Space u (mul-ℝ-Vector-Space V b v)
190+ by preserves-scalar-mul-left-map-bilinear-form-ℝ-Vector-Space a _ _
191+ =
192+ a *ℝ (b *ℝ map-bilinear-form-ℝ-Vector-Space u v)
193+ by
194+ ap-mul-ℝ
195+ ( refl)
196+ ( preserves-scalar-mul-right-map-bilinear-form-ℝ-Vector-Space
197+ ( b)
198+ ( _)
199+ ( _))
200+ = (a *ℝ b) *ℝ map-bilinear-form-ℝ-Vector-Space u v
201+ by inv (associative-mul-ℝ _ _ _)
174202```
175203
176204## External links
0 commit comments