|
| 1 | +# Accumulation points of subsets of located metric spaces |
| 2 | + |
| 3 | +```agda |
| 4 | +module metric-spaces.accumulation-points-subsets-located-metric-spaces where |
| 5 | +``` |
| 6 | + |
| 7 | +<details><summary>Imports</summary> |
| 8 | + |
| 9 | +```agda |
| 10 | +open import elementary-number-theory.addition-positive-rational-numbers |
| 11 | +open import elementary-number-theory.inequality-natural-numbers |
| 12 | +open import elementary-number-theory.natural-numbers |
| 13 | +open import elementary-number-theory.positive-rational-numbers |
| 14 | +open import elementary-number-theory.strict-inequality-rational-numbers |
| 15 | +
|
| 16 | +open import foundation.conjunction |
| 17 | +open import foundation.dependent-pair-types |
| 18 | +open import foundation.existential-quantification |
| 19 | +open import foundation.function-types |
| 20 | +open import foundation.intersections-subtypes |
| 21 | +open import foundation.logical-equivalences |
| 22 | +open import foundation.propositional-truncations |
| 23 | +open import foundation.propositions |
| 24 | +open import foundation.subtypes |
| 25 | +open import foundation.universe-levels |
| 26 | +
|
| 27 | +open import lists.sequences |
| 28 | +
|
| 29 | +open import logic.functoriality-existential-quantification |
| 30 | +
|
| 31 | +open import metric-spaces.apartness-located-metric-spaces |
| 32 | +open import metric-spaces.cauchy-approximations-metric-spaces |
| 33 | +open import metric-spaces.cauchy-sequences-metric-spaces |
| 34 | +open import metric-spaces.closed-subsets-located-metric-spaces |
| 35 | +open import metric-spaces.limits-of-cauchy-approximations-metric-spaces |
| 36 | +open import metric-spaces.limits-of-sequences-metric-spaces |
| 37 | +open import metric-spaces.located-metric-spaces |
| 38 | +open import metric-spaces.subspaces-metric-spaces |
| 39 | +``` |
| 40 | + |
| 41 | +</details> |
| 42 | + |
| 43 | +## Idea |
| 44 | + |
| 45 | +An |
| 46 | +{{#concept "accumulation point" WDID=Q858223 WD="limit point" Disambiguation="of a subset of a located metric space" Agda=accumulation-point-subset-Located-Metric-Space}} |
| 47 | +of a subset `S` of a |
| 48 | +[located metric space](metric-spaces.located-metric-spaces.md) `X` is a point |
| 49 | +`x : X` such that there exists a |
| 50 | +[Cauchy approximation](metric-spaces.cauchy-approximations-metric-spaces.md) `a` |
| 51 | +with [limit](metric-spaces.limits-of-cauchy-approximations-metric-spaces.md) `x` |
| 52 | +such that for every `ε : ℚ⁺`, `a ε` is in `S` and is |
| 53 | +[apart](metric-spaces.apartness-located-metric-spaces.md) from `x`. In |
| 54 | +particular, this implies an accumulation point is not isolated. |
| 55 | + |
| 56 | +## Definition |
| 57 | + |
| 58 | +```agda |
| 59 | +module _ |
| 60 | + {l1 l2 l3 : Level} |
| 61 | + (X : Located-Metric-Space l1 l2) |
| 62 | + (S : subset-Located-Metric-Space l3 X) |
| 63 | + where |
| 64 | +
|
| 65 | + is-accumulation-to-point-prop-subset-Located-Metric-Space : |
| 66 | + type-Located-Metric-Space X → |
| 67 | + subtype |
| 68 | + ( l2) |
| 69 | + ( cauchy-approximation-Metric-Space (subspace-Located-Metric-Space X S)) |
| 70 | + is-accumulation-to-point-prop-subset-Located-Metric-Space x a = |
| 71 | + Π-Prop |
| 72 | + ( ℚ⁺) |
| 73 | + ( λ ε → |
| 74 | + apart-prop-Located-Metric-Space X |
| 75 | + ( pr1 |
| 76 | + ( map-cauchy-approximation-Metric-Space |
| 77 | + ( subspace-Located-Metric-Space X S) |
| 78 | + ( a) |
| 79 | + ( ε))) |
| 80 | + ( x)) ∧ |
| 81 | + is-limit-cauchy-approximation-prop-Metric-Space |
| 82 | + ( metric-space-Located-Metric-Space X) |
| 83 | + ( map-short-function-cauchy-approximation-Metric-Space |
| 84 | + ( subspace-Located-Metric-Space X S) |
| 85 | + ( metric-space-Located-Metric-Space X) |
| 86 | + ( short-inclusion-subspace-Metric-Space |
| 87 | + ( metric-space-Located-Metric-Space X) |
| 88 | + ( S)) |
| 89 | + ( a)) |
| 90 | + ( x) |
| 91 | +
|
| 92 | + is-accumulation-to-point-subset-Located-Metric-Space : |
| 93 | + type-Located-Metric-Space X → |
| 94 | + cauchy-approximation-Metric-Space (subspace-Located-Metric-Space X S) → |
| 95 | + UU l2 |
| 96 | + is-accumulation-to-point-subset-Located-Metric-Space x a = |
| 97 | + type-Prop (is-accumulation-to-point-prop-subset-Located-Metric-Space x a) |
| 98 | +
|
| 99 | + is-accumulation-point-prop-subset-Located-Metric-Space : |
| 100 | + subset-Metric-Space (l1 ⊔ l2 ⊔ l3) (metric-space-Located-Metric-Space X) |
| 101 | + is-accumulation-point-prop-subset-Located-Metric-Space x = |
| 102 | + ∃ ( cauchy-approximation-Metric-Space (subspace-Located-Metric-Space X S)) |
| 103 | + ( is-accumulation-to-point-prop-subset-Located-Metric-Space x) |
| 104 | +
|
| 105 | + is-accumulation-point-subset-Located-Metric-Space : |
| 106 | + type-Located-Metric-Space X → UU (l1 ⊔ l2 ⊔ l3) |
| 107 | + is-accumulation-point-subset-Located-Metric-Space x = |
| 108 | + type-Prop (is-accumulation-point-prop-subset-Located-Metric-Space x) |
| 109 | +
|
| 110 | + accumulation-point-subset-Located-Metric-Space : UU (l1 ⊔ l2 ⊔ l3) |
| 111 | + accumulation-point-subset-Located-Metric-Space = |
| 112 | + type-subtype is-accumulation-point-prop-subset-Located-Metric-Space |
| 113 | +``` |
| 114 | + |
| 115 | +## Properties |
| 116 | + |
| 117 | +### A closed subset of a metric space contains all its accumulation points |
| 118 | + |
| 119 | +```agda |
| 120 | +module _ |
| 121 | + {l1 l2 l3 : Level} |
| 122 | + (X : Located-Metric-Space l1 l2) |
| 123 | + (S : closed-subset-Located-Metric-Space l3 X) |
| 124 | + where |
| 125 | +
|
| 126 | + is-in-closed-subset-is-accumulation-point-Located-Metric-Space : |
| 127 | + (x : type-Located-Metric-Space X) → |
| 128 | + is-accumulation-point-subset-Located-Metric-Space |
| 129 | + ( X) |
| 130 | + ( subset-closed-subset-Located-Metric-Space X S) |
| 131 | + ( x) → |
| 132 | + is-in-closed-subset-Located-Metric-Space X S x |
| 133 | + is-in-closed-subset-is-accumulation-point-Located-Metric-Space x is-acc-x = |
| 134 | + is-closed-subset-closed-subset-Located-Metric-Space |
| 135 | + ( X) |
| 136 | + ( S) |
| 137 | + ( x) |
| 138 | + ( λ ε → |
| 139 | + let |
| 140 | + open |
| 141 | + do-syntax-trunc-Prop |
| 142 | + ( ∃ |
| 143 | + ( type-Located-Metric-Space X) |
| 144 | + ( λ y → |
| 145 | + neighborhood-prop-Located-Metric-Space X ε x y ∧ |
| 146 | + subset-closed-subset-Located-Metric-Space X S y)) |
| 147 | + in do |
| 148 | + (approx@(a , _) , a#x , lim-a=x) ← is-acc-x |
| 149 | + let (y , y∈S) = a ε |
| 150 | + intro-exists |
| 151 | + ( y) |
| 152 | + ( symmetric-neighborhood-Located-Metric-Space X |
| 153 | + ( ε) |
| 154 | + ( y) |
| 155 | + ( x) |
| 156 | + ( saturated-is-limit-cauchy-approximation-Metric-Space |
| 157 | + ( metric-space-Located-Metric-Space X) |
| 158 | + ( map-short-function-cauchy-approximation-Metric-Space |
| 159 | + ( subspace-Located-Metric-Space |
| 160 | + ( X) |
| 161 | + ( subset-closed-subset-Located-Metric-Space X S)) |
| 162 | + ( metric-space-Located-Metric-Space X) |
| 163 | + ( short-inclusion-subspace-Metric-Space |
| 164 | + ( metric-space-Located-Metric-Space X) |
| 165 | + ( subset-closed-subset-Located-Metric-Space X S)) |
| 166 | + ( approx)) |
| 167 | + ( x) |
| 168 | + ( lim-a=x) |
| 169 | + ( ε)) , |
| 170 | + y∈S)) |
| 171 | +``` |
| 172 | + |
| 173 | +### The property of being a sequential accumulation point |
| 174 | + |
| 175 | +```agda |
| 176 | +module _ |
| 177 | + {l1 l2 l3 : Level} |
| 178 | + (X : Located-Metric-Space l1 l2) |
| 179 | + (S : subset-Located-Metric-Space l3 X) |
| 180 | + (x : type-Located-Metric-Space X) |
| 181 | + where |
| 182 | +
|
| 183 | + is-sequence-accumulating-to-point-prop-subset-Located-Metric-Space : |
| 184 | + subtype l2 (sequence (type-subtype S)) |
| 185 | + is-sequence-accumulating-to-point-prop-subset-Located-Metric-Space a = |
| 186 | + Π-Prop ℕ (λ n → apart-prop-Located-Metric-Space X (pr1 (a n)) x) ∧ |
| 187 | + is-limit-prop-sequence-Metric-Space |
| 188 | + ( metric-space-Located-Metric-Space X) |
| 189 | + ( pr1 ∘ a) |
| 190 | + ( x) |
| 191 | +
|
| 192 | + is-sequence-accumulating-to-point-subset-Located-Metric-Space : |
| 193 | + sequence (type-subtype S) → UU l2 |
| 194 | + is-sequence-accumulating-to-point-subset-Located-Metric-Space = |
| 195 | + is-in-subtype |
| 196 | + ( is-sequence-accumulating-to-point-prop-subset-Located-Metric-Space) |
| 197 | +
|
| 198 | + is-sequential-accumulation-point-prop-subset-Located-Metric-Space : |
| 199 | + Prop (l1 ⊔ l2 ⊔ l3) |
| 200 | + is-sequential-accumulation-point-prop-subset-Located-Metric-Space = |
| 201 | + ∃ ( sequence (type-subtype S)) |
| 202 | + ( is-sequence-accumulating-to-point-prop-subset-Located-Metric-Space) |
| 203 | +
|
| 204 | + is-sequential-accumulation-point-subset-Located-Metric-Space : |
| 205 | + UU (l1 ⊔ l2 ⊔ l3) |
| 206 | + is-sequential-accumulation-point-subset-Located-Metric-Space = |
| 207 | + type-Prop is-sequential-accumulation-point-prop-subset-Located-Metric-Space |
| 208 | +``` |
| 209 | + |
| 210 | +### If `x` is an accumulation point of `S`, it is a sequential accumulation point of `S` |
| 211 | + |
| 212 | +```agda |
| 213 | +module _ |
| 214 | + {l1 l2 l3 : Level} |
| 215 | + (X : Located-Metric-Space l1 l2) |
| 216 | + (S : subset-Located-Metric-Space l3 X) |
| 217 | + (x : type-Located-Metric-Space X) |
| 218 | + where |
| 219 | +
|
| 220 | + abstract |
| 221 | + is-sequential-accumulation-point-is-accumulation-point-subset-Located-Metric-Space : |
| 222 | + is-accumulation-point-subset-Located-Metric-Space X S x → |
| 223 | + is-sequential-accumulation-point-subset-Located-Metric-Space X S x |
| 224 | + is-sequential-accumulation-point-is-accumulation-point-subset-Located-Metric-Space = |
| 225 | + map-exists |
| 226 | + ( _) |
| 227 | + ( map-cauchy-sequence-cauchy-approximation-Metric-Space |
| 228 | + ( subspace-Located-Metric-Space X S)) |
| 229 | + ( λ a (a#x , lim-a=x) → |
| 230 | + ( ( λ n → a#x _) , |
| 231 | + is-limit-cauchy-sequence-cauchy-approximation-Metric-Space |
| 232 | + ( metric-space-Located-Metric-Space X) |
| 233 | + ( map-short-function-cauchy-approximation-Metric-Space |
| 234 | + ( subspace-Located-Metric-Space X S) |
| 235 | + ( metric-space-Located-Metric-Space X) |
| 236 | + ( short-inclusion-subspace-Metric-Space |
| 237 | + ( metric-space-Located-Metric-Space X) |
| 238 | + ( S)) |
| 239 | + ( a)) |
| 240 | + ( x) |
| 241 | + ( lim-a=x))) |
| 242 | +``` |
| 243 | + |
| 244 | +### If `x` is a sequential accumulation point of `S`, it is an accumulation point of `S` |
| 245 | + |
| 246 | +```agda |
| 247 | +module _ |
| 248 | + {l1 l2 l3 : Level} |
| 249 | + (X : Located-Metric-Space l1 l2) |
| 250 | + (S : subset-Located-Metric-Space l3 X) |
| 251 | + (x : type-Located-Metric-Space X) |
| 252 | + where |
| 253 | +
|
| 254 | + abstract |
| 255 | + is-accumulation-point-is-sequential-accumulation-point-subset-Located-Metric-Space : |
| 256 | + is-sequential-accumulation-point-subset-Located-Metric-Space X S x → |
| 257 | + is-accumulation-point-subset-Located-Metric-Space X S x |
| 258 | + is-accumulation-point-is-sequential-accumulation-point-subset-Located-Metric-Space |
| 259 | + is-seq-acc-x = |
| 260 | + let |
| 261 | + open |
| 262 | + do-syntax-trunc-Prop |
| 263 | + ( is-accumulation-point-prop-subset-Located-Metric-Space X S x) |
| 264 | + in do |
| 265 | + (σ , σ#x , lim-σ=x) ← is-seq-acc-x |
| 266 | + μ@(mod-μ , is-mod-μ) ← lim-σ=x |
| 267 | + intro-exists |
| 268 | + ( cauchy-approximation-cauchy-sequence-Metric-Space |
| 269 | + ( subspace-Located-Metric-Space X S) |
| 270 | + ( σ , |
| 271 | + is-cauchy-has-limit-modulus-sequence-Metric-Space |
| 272 | + ( metric-space-Located-Metric-Space X) |
| 273 | + ( pr1 ∘ σ) |
| 274 | + ( x) |
| 275 | + ( μ))) |
| 276 | + ( ( λ ε → σ#x _) , |
| 277 | + ( λ ε δ → |
| 278 | + let ε' = modulus-le-double-le-ℚ⁺ ε |
| 279 | + in |
| 280 | + monotonic-neighborhood-Located-Metric-Space |
| 281 | + ( X) |
| 282 | + ( pr1 (σ (mod-μ ε'))) |
| 283 | + ( x) |
| 284 | + ( ε') |
| 285 | + ( ε +ℚ⁺ δ) |
| 286 | + ( transitive-le-ℚ _ _ _ |
| 287 | + ( le-left-add-ℚ⁺ ε δ) |
| 288 | + ( le-modulus-le-double-le-ℚ⁺ ε)) |
| 289 | + ( is-mod-μ ε' (mod-μ ε') (refl-leq-ℕ (mod-μ ε'))))) |
| 290 | +``` |
| 291 | + |
| 292 | +### Being an accumulation point is equivalent to being a sequential accumulation point |
| 293 | + |
| 294 | +```agda |
| 295 | +module _ |
| 296 | + {l1 l2 l3 : Level} |
| 297 | + (X : Located-Metric-Space l1 l2) |
| 298 | + (S : subset-Located-Metric-Space l3 X) |
| 299 | + (x : type-Located-Metric-Space X) |
| 300 | + where |
| 301 | +
|
| 302 | + is-accumulation-point-iff-is-sequential-accumulation-point-subset-Located-Metric-Space : |
| 303 | + is-accumulation-point-subset-Located-Metric-Space X S x ↔ |
| 304 | + is-sequential-accumulation-point-subset-Located-Metric-Space X S x |
| 305 | + is-accumulation-point-iff-is-sequential-accumulation-point-subset-Located-Metric-Space = |
| 306 | + ( is-sequential-accumulation-point-is-accumulation-point-subset-Located-Metric-Space |
| 307 | + ( X) |
| 308 | + ( S) |
| 309 | + ( x) , |
| 310 | + is-accumulation-point-is-sequential-accumulation-point-subset-Located-Metric-Space |
| 311 | + ( X) |
| 312 | + ( S) |
| 313 | + ( x)) |
| 314 | +``` |
| 315 | + |
| 316 | +## External links |
| 317 | + |
| 318 | +- [Accumulation point](https://en.wikipedia.org/wiki/Accumulation_point) on |
| 319 | + Wikipedia |
0 commit comments