Skip to content

Why expect Z in Adapter? #8

@niedakh

Description

@niedakh

The class Adapter expects Z in constructor:

class Adapter(transformers.PreTrainedModel):
    config_class = transformers.PretrainedConfig
    def __init__(self, config, classifiers=None, Z=None, labels_list=[]):
        super().__init__(config)    
        self.Z= torch.nn.Embedding(len(config.classifiers_size),config.hidden_size, max_norm=1.0).weight if Z==None else Z
        self.classifiers=torch.nn.ModuleList(
            [torch.nn.Linear(config.hidden_size,size) for size in config.classifiers_size]
        ) if classifiers==None else classifiers
        self.config=self.config.from_dict(
            {**self.config.to_dict(),
            'labels_list':labels_list}
        )
    def adapt_model_to_task(self, model, task_name):
        task_index=self.config.tasks.index(task_name)
        #setattr(model,search_module(model,'linear',mode='class')[-1], self.classifiers[task_index])
        model.classifier=self.classifiers[task_index]
        return model
    def _init_weights(*args):
        pass 

but doesn't use it at all when adapting model to task?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions